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ABSTRACT 

 

This study focuses on winter wheat yield assessment from 

NASA’s Harmonized Landsat Sentinel-2 (HLS) product and 

meteorological observations through phenological fitting. 

Vegetation indices (VIs), namely difference vegetation index 

(DVI), normalized difference vegetation index (NDVI) and 

enhanced vegetation index (EVI2), extracted from satellite 

optical data, are fitted per pixel against accumulated growing 

degree days (AGDD) using a quadratic function. 

Accumulated VIs are correlated against winter wheat yields. 

Results show a better performance from DVI compared to 

NDVI and EVI2. 

 

Index Terms— Wheat, yield, Landsat 8, Sentinel-2, 

Ukraine 

 

1. INTRODUCTION 

 

Combination of data acquired by Landsat 8 and Sentinel-2 

remote sensing satellites can provide high temporal 

resolution (3-5 days) [1], which is critical for various 

applications requiring dense data time series. Previously, 

such (or better) high temporal resolution was available 

mainly for remote sensing sensors, which acquire daily data 

over Earth’s surface, but at coarser spatial resolution 

(>250 m) [2]. The latter, for example, includes space-borne 

remote sensing sensors, such as MODIS, VIIRS, AVHRR, 

SPOT-VEGETATION. Taking into account an increased 

frequency of observations at moderate spatial resolution 

(<30 m), the assumption is that methods and models 

developed for generating products for coarse spatial 

resolution sensors can be ported to moderate spatial 

resolution sensors (for example, Landsat 8/OLI, Sentinel-

2/MSI). However, the practice shows that such transition is 

not always straightforward due to larger data gaps because of 

clouds and uneven coverage, sensor characteristics and 

increased spatial resolution (at least at the order of 10, when 

going from 250 m to 30 m). 

In this work, we focus on a crop yield 

assessment/forecasting application. The hypothesis is that 

satellite-based features, such as vegetation indices (VIs) or 

biophysical parameters derived at a single date or 

accumulated over some time period, can be correlated to crop 

yields [3]. Since the reference data on crop yields are mainly 

available at regional scale, the corresponding empirical 

models are built by averaging satellite-based features over 

those regions and correlating these derived variables to crop 

yields [4],[5],[6],[7]. It is assumed that there is a homogeneity 

within the region in terms of crops grown and agricultural 

practices applied and, therefore, the averaging should be 

performed for satellite data acquired at the same (or 

approximately the same) stages of crop growth, meaning that 

the data are normalized. This is usually the case for coarse 

spatial resolution remote sensing sensors, whose high 

temporal resolution enable high likelihood of obtaining 

cloud-free data over the Earth’s surface [8]. This is also 

evidenced by multiple successful applications of applying 

coarse spatial resolution satellite data to crop yield 

assessment and forecasting [3]-[7]. However, this is not the 

case for moderate spatial resolution satellite data (<30 m). 

Irregular spatial coverage, when the area in question is 

covered by several “stripes” sensed at different times, and 

high revisit cycles lead to discrepancies in dates of cloud-free 

observations. The present study aims to address this issue by 

building empirical models for winter wheat yield assessment 

with Landsat 8 and Sentinel-2 data in Ukraine. We show that 

satellite data normalization is critical in building robust crop 

yield models. Not performing satellite data normalization 

may lead to poorer performance of the empirical crop yield 

model, which would be attributed not to the lack of 

correlation with satellite-derived variables, but rather to 

observation irregularities. 

 

2. STUDY AREA & DATA DESCRIPTION 

 

The study was performed for Kirohohradska oblast in 

Ukraine for 2016-2018. Oblast in Ukraine is a high-level 

administrative division of the country, and each oblast is 

further divided into districts. There are 24 oblasts in Ukraine 

and Autonomous Republic of Crimea. Kirovhradska oblast is 

located in the central part of Ukraine and composed of 21 
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districts with geographical area ranging from 65 to 165 

thousand ha and cropland area ranging from 27 to 112 

thousand ha. It is a highly intensive agricultural region with 

heterogeneous land cover land use (LCLU) classes [9], which 

include forest, grassland, barren soil, water, winter crops 

(wheat and rapeseed) and summer crops (mainly corn, 

sunflower, soybean and sugar beet). 

Winter wheat is one of the major crops in Kirovhradska 

oblast accounting for 20% of production of all crops in the 

region. Winter wheat is mainly rain-fed in the region and 

usually planted in September-October. After dormancy 

during the winter, it re-emerges early spring reaching 

maturity by the end of June. Harvest of winter crops is 

typically undertaken in July. 

Reference data on crop yield and harvested area at 

district level were collected from the Department of Agro-

Industry Development of Kirovohrad State Administration 

(http://apk.kr-admin.gov.ua). The data were made available 

online as the harvest progressed and were based on farm 

surveys of all large agricultural enterprises (that account of 

more than 90% of all winter crops production in the region) 

and samples of household farms the same way as official 

statistics is collected [10]. The final estimates for winter crop 

yields and areas were available at the end of November and 

were used as reference in this study. Uncertainty of reference 

data shall not exceed 10%. 

The main source of remote sensing data is NASA’s HLS 

product [11]. HLS, which stands for Harmonized Landsat 

Sentinel-2, provides a Level-2 product of Nadir BRDF 

(Bidirectional Reflectance Distribution Function)-Adjusted 

surface Reflectance (NBAR) at 30 m. HLS combines, in a 

single data set, observations of the land surface from the 

Landsat 8’s Operational Land Imager (OLI) and Sentinel-2’s 

Multi-Spectral Instrument (MSI). MSI data are also spectrally 

adjusted to OLI spectral bands, so to generate a single 

harmonized dataset. We used HLS version 1.4. A detailed 

description of HLS product generation is given in [11]. 

The study area is covered by eight HLS tiles (each tile is 

approximately 110 km × 110 km), namely 35UQQ, 35UQP, 

36UUV, 36UUU, 36UVV, 36UVU, 36UWV, and 36UWU. 

Overall, 3565 HLS scenes (L30 and S30) were downloaded, 

which covered the whole 2016-2018. 

Meteorological data included a 2 m air temperature, 

which is used to calculate accumulated growing degree days 

(GDDs). The temperature data were extracted from NASA’s 

Modern-Era Retrospective analysis for Research and 

Applications (MERRA2) product [12]. 

 

3. METHODOLOGY 

 

Winter wheat yield mapping and assessment at regional scale 

consists of the two major steps: (i) winter crop mapping, so 

yields are estimated for relevant fields; (ii) yield assessment 

at 30 m spatial resolution. Fig. 1 illustrates all processing 

steps along with the input datasets. 

 

 
Fig. 1. Main algorithmic steps for winter wheat yield assessment 

using Landsat 8 and Sentinel-2 data. 

 

For winter crop mapping, we adopted a previously 

developed approach for MODIS [13],[14] that allows 

automatic mapping of winter crops using a priori knowledge 

on crop calendar and without using reference (ground truth) 

data. The method is based on per-pixel estimation of the peak 

NDVI (hereafter referred as the metric) during early spring 

(or early fall depending on the Earth hemisphere), when 

winter crops have developed biomass, while other crops 

(spring and summer) have no biomass in that time period. The 

calculated metric will have high NDVI values for winter 

crops and low NDVI values for other crops. Then, the metric 

is fitted using a Gaussian mixture model (GMM) to 

automatically discriminate different crop types (winter versus 

others). Parameters of the GMM model are estimated using 

an expectation-maximization (EM) algorithm that is run for 

all pixels identified as cropland. In our study, we used a 

cropland layer derived from the land cover map generated for 

Ukraine at 30 m spatial resolution [15],[16]. The component 

with the largest mean, i.e. NDVI value, in the obtained GMM 

model is considered to belong to the winter crop class. 

Finally, the derived GMM model is applied to all cropland 

pixels, and a posteriori probability of the pixel belonging to 

the winter crop class is estimated in the final resulting map. 

Pixels, with the probability larger than 0.5, are considered as 

winter crops. 

Vegetation indices, derived from HLS, were used for 

correlating with winter wheat yields, and included NDVI, 

DVI, and EVI2. Before deriving satellite based features, one 

has to ensure that satellite data are normalized. Though a 

combination of Landsat 8 and Sentinel-2 offers high 

frequency of observations, discrepancies in available cloud-

free data, however, will still exist (Fig. 2). 

Therefore, when building a crop yield model by 

averaging RS-derived features from different pixels, one has 

to ensure that the values from those pixels are taken from the 

same stage of crop growth. This normalization can be done 

through phenological fitting between VI and accumulated 

GDD (AGDD). To do such a fitting, it is advisable to have as 

much quality samples as possible to better capture the crop 

growth dynamics. The combined use of Landsat 8 and 

Sentinel-2 provides on average 2.7 and 1.6 times more cloud-

free observations compared to Landsat 8 only and Sentinel-2 

only, respectively. Fig. 3 shows an average number of cloud-
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free observations for winter crop pixels during its crop 

calendar (March-July). 

 
Fig. 2. Distribution of the number of cloud free observations from 

Landsat 8 and Sentinel-2 from March through the end of June 2018. 

 
Fig. 3. Average number of cloud-free observations for winter crop 

pixels depending on satellite data usage. The number of pixels was 

taken from March until the end of June. 

 

We used a quadratic model between VIs and 

accumulated GDD (AGDD) [17],[18]: 

 

VI = a0 + a1*AGDD + a2*AGDD2.   (1) 

 

4. RESULTS 

 

Fig. 4 shows results of validation for 2016-2018 combined, 

when comparing the areas of winter crops from official 

statistics and satellite-derived. 

 
Fig. 4. Validation of winter crop maps for 2016-2018 for Kirovohrad 

oblast (Ukraine) at district level. 

 

Fig. 5 shows an example of a quadratic relationship 

between DVI and AGDD.  

The quality of fitting was assessed using two metrics, 

namely coefficient of determination (R2) and root mean 

square error (RMSE) (Fig. 6). In general, all VIs (NDVI, 

DVI, EVI2) exhibited strong relationships between VIs and 

AGDD with averaged R2>0.87. 

 

 
Fig. 5. Quadratic relationship between DVI and AGDD for 2017 for 

a winter crop pixel. 

 

 
Fig. 6. Distribution of the coefficient of determination (R2) and 

RMSE, when fitting DVI with accumulated GDD for 2018 for 

winter crop pixels. Number of winter crop pixels is 7,445,822. 

Average R2=0.87±0.13, and average RMSE=0.015±0.011. Only 

pixels with >8 cloud-free observations during April-June period 

were considered. 

 

Relationships between winter wheat yields and 

accumulated VIs (DVI, EVI2, NDVI) for a district level for 

2016-2018 combined are shown in Fig. 7. Accumulation of 

VIs was performed from green up phase (with DVImin=0.05, 

NDVImin=0.15 and EVI2min=0.15 that were determined 

empirically) until VI peak. 

Better results were obtained for DVI, which showed the 

highest correlation and coefficient of determination for the 

relationships between accumulated DVI and crop yields. 

 

5. CONCLUSIONS 

 

This study showed the importance of satellite data 

normalization for crop yield assessment task. Combination of 

Landsat 8 and Sentinel-2 offers high temporal frequency of 

data, however discrepancies in acquisitions should be 

accounted, so satellite-derived features, e.g. VIs, from 

different pixels can be combined together. Normalization was 

performed through phenological fitting, whereas VIs were 

fitted to accumulated GDDs through quadratic function. All 

indices considered, namely DVI, NDVI and EVI2, showed a 

strong relationships yielding a coefficient of determination 

R2>0.87. In terms of correlating with crop yields accumulated 

DVI showed a better performance (R2=0.68) compared to 

NDVI (R2=0.31) and EVI2 (R2=0.55). Further works will be 

focused on incorporating all spectral bands into the yield 

models. 
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Fig. 7. Relationships between winter wheat yields and accumulated 

VIs from Landsat 8 and Sentinel-2, namely DVI, EVI2, and NDVI, 

at district level in Kirovohradska oblast for 2016-2018 combined.  
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